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Abstract —A class of cylindrical multicondnctor transmksion lines k
theoretically analyzed, and useful parameters, e.g., characteristic imped-

ance and effective dielectric constant, are derived. Diseretization of the

continuous functions and exploitation of the periodicity of the cylhrdricaf

structure lead to a dkcrete convolution which can be carried out numeri-

cally rigorously and efficiently using the FFT algorithm. An iterative

technique is employed in the spectral domain to derive the solution of

integral equations for the charge distribution. Numerical results are pre-

sented and compared with available data.

I. INTRODUCTION

c YLINDRICAL STRIPLINES and rnicrostrip lines

c~perating in the quasi-TEM mode have recently re-

ceived much attention in the microwave literature [1]–[6].

Using flexible dielectrics, it is possible to construct non-

planar transmission lines that can be wrapped around a

cylindrical surface and used to excite conformal arrays

mounted on a cylindrical object. A cylindrical transmission

line is also useful for modeling a warped, planar transmis-

sion IIine that has been subjected to severe environmental

changes.

Two basic approaches have been employed to analyze

cylindrical striplines and microstrip lines. The first of these

entails the solution of the Laplace equation in cylindrical

coordinates and yields a dual series representation for the

potential function. The constants appearing in the series

are obtained either by using the least-square or simple

integration methods [1] or by solving two simple equations

that take the fringing field into account [6]. In this method,

the analysis is not rigorous because the infinite series is

truncated. The second approach transforms the cylindrical

structure into a planar one by conformal mapping [3]–[5].

Although this method is rigorous, the solution requires the

numerical evaluation of elliptical integrals. In any event,

neither of these two approaches is suitable for the analysis

of cylindrical multiconductor transmission lines.

In this paper, a class of cylindrical multiconductor

transmission lines is analyzed using a spectral-domain
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formulation. The continuous functions representing the

charge distribution are discretized into a series of cylin-

drical pulses with unknown weighting coeffients. Next,

these coefficients are solved for using an iterative proce-

dure [7]–[9] appropriate for the spectral-domain formula-

tion. Unlike the planar structures [8] that are aperiodic in

the transverse direction, the cylindrical transmission lines

are strictly periodic in the @ direction; hence, the fast

Fourier transform algorithm can be rigorously applied to

compute the convolution integral [10]. For the single-ccm-

ductor case, the characteristic impedances of a cylindrical

stripline and microstrip line are compared with the results

presented in [1], [2], [5], and [6]. Next, the finite-thickness

strip is treated using a modified spectral Green’s function

[11], and the results for this geometry are compared with

the data calculated from the equations provided in [5]. The

iterative method is then extended to the twe-conductor

case, for which the even- and odd-mode characteristic

impedances [12] are calculated. The propagation constants

for different propagating modes of the cylindrical multi-

conductor transmission lines are also computed and dis-

played as a function of certain geometrical parameters.

IL OUTLINE OF THEORETICAL PROCEDURE

The cross section of a generic cylindrical multiconductor

transmission to be analyzed is shown in Fig. 1. With

appropriate choices of parameters and boundary condi-

tions, this Structure can be reduced to a single-layer or

multilayer stripline; a rnicrostrip line; or a buried micro-

strip line. The Maxwell’s coefficients of capacitance for the

line can be readily obtained if the charge distribution on

the conducting lines is known for different excitations. The

line coefficients of inductance can be obtained from the

coefficients of capacitance with the dielectric replaced by

air [13]. The integral equation describing the problem can

be written as

V(@, P,)= ~~~G,,(@>@ ’> Pi> Pj)OJ(O’, Pj)d @’, @GDJ

JJ
(1)

and

OJ(+, P,)=O> @@D, (2)

where DJ corresponds to the intervals in the @ direction
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Fig. 1. Multiconductor cylindrical transmission line.

which coincide with the conducting strips on the jth

interface occupied by the strips. V(O, p,) represents the

specified voltages on the conducting strips and G,J are the

Green’s functions to be determined in the next section.

Then the only unknowns are the charge distributions

U( O, PJ) on each of the conducting strips. For an N-con-

ductor system, this integral equation is solved N times,

corresponding to N independent excitations. The total

charge on each of the strips is obtained by integrating the

charge distribution along the arc length of the strip. The

coefficients of capacitance [C] and inductance [L] are

obtained through the following matrix equations:

Q=~u(c))P&I (3)

[C]= [Q][V]-’ (4)

[L] =poco[co]-’ (5)

where [V] is the voltage excitation matrix, [Q] is the

corresponding charge matrix, and [CO] is the capacitance

matrix calculated with the dielectric layers replaced by air.

The eigenvalues of the product of the [L] and [C] matrices

will give the propagation velocities of the dominant propa-

gating modes. These propagation velocities can then be

converted to propagation constants for the cross-talk anal-

ysis of the transmission line.

III. DERIVATION OF THE GREEN’S FUNCTION IN

THE SPECTRAL DOMAIN

As a preamble to formulating the integral equation

using the spectral-domain approach, we need to derive the

spectral Green’s function for the geometry under consider-

ation. Initially, we assume that the strips are infinitely

thin; the modification necessary to handle the small but

finite thickness [11] case is discussed later. To illustrate,

the derivation of the spectral Green’s function for a strip-

line filled with a three-layer dielectric [6] is detailed below

and only a tabulation of the other spectral Green’s func-

tions for the structures considered in this paper is provided

later.

Consider the cylindrical stripline shown in Fig. 2 with a

three-layer dielectric filling. The potential V in various

regions satisfies the Laplace equation [6] in the cylindrical

Fig. 2. Cylindrical stnpline with a three-layer dielectric filling

coordinates

For the case of an infinitely thin strip, the charge distribu-

tion assumes the form

u(@, p)=u(@)8(p–d3) (7)

where 8( p – d~ ) is the Dirac delta function.

Now define the Fourier transform pair of Y via the

following integral and summation:

and

~(p,~) = ~ I(p, n)e-Jn@. (9)
–w

Next, transforming (6) according to (8) gives

{-n’+papiw(pn)=o
or

The boundary and continuity conditions in the Fourier

transform domain read

%111( d4, n) =0 (11)

*11(d3, n)=@,l, (~3,1z) (12)

‘?11(d2,n)=@1(ci2,n) (14)

d a
6r2—@11(d2,n)= fr1—$1(2,ft)

ap d’
(15)

and

ll(dl, n)=O (16)

where C,l, ~,2, and C,3 are the relative dielectric constants

for regions 1, II, and III, respectively.
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In all three regions, the general solution of (10) is

Alnp + B for n = O and Ap-n + Bpn for n #O, respec-

tively. Upon writing these solutions for different regions

and enforcing the boundary and continuity conditions

(11)-(16), a set of inhomogeneous simultaneous equations
for the coefficients of the potential function in the differ-

ent regions is obtained. These equations are readily solved

to yield $, the Fourier transform of the potential distribu-

tion at p = d3. It is given by

@(d3, n)=~(dq, n)~(n)

with

@d3,0)=~~
co Do

– d3 N.
~(d3, n) =---5 forn#O

where

No=ln(2){’rlln(2) +’:ln($)}

(17)

(18a)

(18b)

(19a)

(19b)

( (d3))+’rlcOth(’n’1n(2)l ‘19C)

N.= c,, coth Inlln z

and

‘n’ln(%))cOth(’n’in(3)
( (a)cOth(’n’in(2))+ C,,3C,Icoth in Iln

( (d:))cO’h(’n’in(2))-+”2)+E,2Cr1 coth (n]ln ~

(19d)

It is important to point out that due to the @periodicity of

the cylindrical structure, the spectral Green’s function is

discrete. Furthermore, the spectral Green’s function is

symmetric in n. Putting c,1 = (,2 = c,3, we have the spec-

tral Green’s function for the single dielectric stripline

described in [1]-[6].

The spectral Green’s function for the microstrip line

discussed in [1] and [5] can be obtained easily by setting

c.I = c,2 = ~,3 and d4 ~ co. The resulting equation is given

as

(20a)

417

and

(())– d,coth Inlln ~

~(d3, n)=—

‘n’’o(-coth(’n’k(%i) +’rl)

for n #O. (20b)

If the conducting strips are placed at p = dz, 6,3 =1, and

dd ~ m, the buried microstrip configuration is obtained.

Again, for CY2= C,I, we have

(1d, in ~

(21a)

and

“[‘: (d3))+’@iA(’n’in(2))

–cosh Inlln ~

( (:3))+’lskh(’n’1n(2)l

–cosh lnlln Q
1

for n #O. (21b)

If we place another set of conducting strips at p = d,

(see Fig. 1), we obtain a different coupled stripline system.

To derive the spectral Green’s function of this new struc-

ture, we simply replace 6 in (13) by &l. At the interface

between regions I ad II, (15) is replaced by the new

boundary condition, which reads

a
cr2—lP11(d2, n) =C,l

i?p
-$@l(d,, n)-~62(n). (22)

Here, &l and 62 are the Fourier transforms of the charge

distributions at p = d3 and dz, respectively. Solving the

algebraic equations, we obtain

where

(d;)[cr11n($)+cr21dll(0) =d3 In ~

(24a)

~12(0) = cr,dz in
($:)’n(+)/D(o)

(721(0) = 6r2d3 In
(2)1n(:)/D(0)

(24b)

(24C)
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( (%))[’,cosh(’n’’n(%))sinh(’n’’n(a~ll(n) = – d3 sinh Inlln

( (dl))sinh(lnlln(~))l~D(n)–c,l cosh Inlln ~

( (3))s’fi(l.lln(~))/~(.)
~1, (n) = –2c,2d2 sinh ]nlln

( ( ,)]’’nh(lln(+]]//~(~)
~,l(n) = –2t,2d~ sinh Inlln ~

[ ($j)[(2sinh[’n’ln(:l)cOsh[ln’1n(2)l

(?Z, (n) = –d2sinh Inlln

( (%))sinh(’n’’n(:)ll/D’n)–6,3cosh lnlln

where

(rr (2)+’r1Er21n(2)+’r2’r3’n($))D(O) =fO f ~t ~ln

( ( (%j)sinh(’nlln($)) sinh(’n’in($))

D(n) =lnlcO cz, sinh Inlln

( (2))c0sh(ln1n(+)sinh(’n’in(2))
– ~,,~r~cosh ]nlln

( (d:))cOsh(’n’1n(%))sinh(@2))

– c,lc,, cosh Inlln ~

( (2))c0sh(ln1:($))c0sh+ C,IC,3sinh Inlln

(25a)

(25b)

(25c)

(25d)

(26a)

(26b)

If we let d4 -m, we can obtain the spectral Green’s

function for the case where we have a layer of microstrip

lines and a layer of buried microstrip lines.

The deviations of the above spectral Green’s functions

were based on the assumption that the thickness of the

strip is negligible compared to the arc length of the strip.

When the strip has a finite thickness, we need to modify

the spectral Green’s function. As an example, the case of a

single-dielectric-layer stripline of finite thickness [5] is

discussed here.

In the derivation of the spectral Green’s function for the

case of an infinitely thin strip, the constants for the general

solutions of (6) are evaluated. Substituting these constants

into the representation of the potential function in region

III, the potential at a small distance 8 above the strip at

p = d3 is related to the potential at p = dq by

\d4)

and

*(d3+8, n)=
‘inh(’n’’n(%)l for ~+o<

(())

d3
sinh Inlln ~

4

(27b)

Considering the two layers of charge at d~ + S and d3,
with each having the same amount of total charge, the

spectral Green’s function can be modified by multiplying

by the correcting function
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and

‘(n’=1’+si~J$3‘Orn”o-
(28b)

Since the charges at the two edges are neglected, this

approximation is valid only for a small ratio of finite

thickness to the arc length of the conducting strips. For the

cylindrical stripline, the results are compared with the

thick-strip results calculated from the equations given in

[5].

IV. THE ITERATIVE PROCEDURE

An iterative algorithm based on that in [7] and [9] for

solving (1) is constructed by defining an error criterion as

follows:

f’(q)) =V(++~G(I#,#)u’(+’)d# (29)
D

[1Jlm)l’wm 1’2
BCE = D

~JW#W2~d@

(30)

where o‘ represents an initial guess, and BCE denotes the

boundary condition error. The updated u is generated and

is used as the initial guess for the subsequent iteration,

This procedure systematically and monotonically improves

the accuracy of the solution and is repeated until the error

is sufficiently small [7]–[9].

The convolution operation in (1) with the p dependence

suppressed is carried out in the following manner:

~DG($,@’)u’(@’) do’= F-l{ GF[u’]} (31)

The reason for using the cylindrical pulse function, as

opposed to 8 sampling, is that the convergence of the ,

iterative procedure is usually superior for the pulse expan-

sion relative to the d-sampling case. Upon Fourier-trans-

forming (32), we obtain

()

n AI#I
~ . sine —

2
FFT (u.) (36a)

or

6=jFFT(o~). (36b)

Hence, the continuous convolution in (1) can be written as

a discrete convolution:

(37)

The modified algorithm is given as
**************************

k=~ *:=0 (38)

F:= Vn (39)

N/2 – 1

BCEN= ~ lVJpAI#J (40)
– N/2

BCEO = 1 (41)

**************************

k = k +1- g$ = FFT-l(FFT(F~-’) $%-l) (42)

N/2 – 1

N/2 – 1

***** **********************
N/2 -1

if n :>1 Ck = ~ fJ~~-lpA@

where F and F– 1 represent forward and inverse Fourier
– N/2

transforms, respectively.
~k==~k*/Bk-l

The present method is slightly different from those in”

[7]-[9] in that the 8 sampling is not used in discretizing the

Bk ,. Bk –~kck

continuous function o. Instead, we expand the unknown
g;,. g; – {kg~-l

function u by cylindrical pulses as follows: f; :=,t; –{k#-l

N/2 – 1

u(+) = ~ unPn
– N/2

(32)

where

R=(1‘f(n-:)A@-++:)A@(33)
o otherwise

A4=fi (34)

~k ,= ~k*/Bk

~k,=ak–l.+qkg:
nn

F: = F:-l – qkf:
N/2 – 1 1/2

~ lF~12pA@

BCEk =

[]

– N/2

BCE N ‘

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

N The asterisk represents the complex conjugate operation.

uti=o when ~G D. (35) ***** **********:***********
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There are several important features of the iterative

approach, as enumerated below. First, this iterative pro-

cess generates a numerically rigorous solution to the dis-

cretized problem and does not involve the truncation of

the infinite series as in [1] and [6]. Second, it can have a

large number of unknowns without suffering from the

computer storage problem, as in the matrix methods, be-

cause the iterative algorithm only requires the storage of

column vectors. Third, the iteration process typically con-

verges very quicklyl and can be terminated once the

desired accuracy is reached. Fourth, the choice of the

initial guess u‘ is not critical; in fact, it can even be zero.

Fifth, in contrast to the matrix or dual series approach, the

accuracy of the results can be readily improved in the

iterative procedure by simply increasing the number of

expansion pukes without increasing the complexity of the

computational steps. Finally, the algorithm is easy to pro-

gram and different structures can be analyzed by simply

changing the spectral Green’s function subroutine.

V. ~umR1C,4L RESULTS

A number of cylindrical multiconductor transmission

lines have been investigated using this iterative method

and some representative results are presented in this paper.

For further details, the reader is referred to Chan and

Mittra [15]. Since the iterative method is solving an ap-

proximate problem in which continuous functions are being

approximated by series of cylindrical pulses, it is necessary

to verify the numerical convergence by increasing the

number of these pulse functions and studying the behavior

of the solution. Table I shows the normalized characteristic

impedance of a homogeneous striphne with c~1= c~z= c~~,

d4/dl = 2, d~ /dl = 1.8, and dz/dl = 1.4. Three different

sampling rates A8 = 2r/N with N = 512, 1024, and 2048

are used. The stopping criterion of the iteration process is

set at BCE <5 X 10 – 4. It took seven iterations at most and

about 4 s on a VAX 11/780 for N = 2048. For N = 512, it

usually took only three to five iterations and fractions of a

second to stop the iteration process. Because of numerical

discretization, the width of the strip must be a multiple of

27r/2m for applying the radix 2 FFT. Hence, the strip

half-angle is slightly different for the three different sam-

pling rates. Keeping this in mind, we note that, in general,

the solutions agree very well with each other, and we

conclude that N = 512 is adequate for achieving numerical

convergence. Consequently, for the rest of the calculations,

N = 512 is assumed.

For the thin dielectric case, i.e., when d4/dl = 1.1, the

approximation used in [1] and [6] is valid and the results

compare well with the iterative method shown in Fig. 3.

For a thicker dielectric, i.e., for d4/dl = 2 and d3/dl = 1.8,
the results from [1] and [6] seem to be somewhat inaccu-

rate when the strip half-angle is less than 80°. However,

for d3/dl = 1.4, a reasonably good approximate solution is

obtained if the effective strip half-angle [6] is used. The

1The nondivergence of the Iterations scheme has been proved in [7] and

[14].

TABLE I

NORMALIZED CHARACTERISTIC IMPEDANCE OF A HOMOGENEOUS

STRIPLINE AS A FUNCTION OF STRIP HALF-ANGLE WITH

DIFFERENT SAMPLING RATES

I N= 512 N= 1024 X = 2048

a ~Z,, (ohm) ~ ~Z. (ohms) a 6Z. (ohms)

2004 38.23 1986 3832 1995
3973

38.14
2143 3990 2133

60.12
39.99 21.27

14.75 5994 1478 6003
79.82

1475
11.34 79.98

1Q3.20
11.31 8007

914
1129

100.02 9,16 99.93 916
119.88 771 12006 7.69 119.97 i’. 70
140.27 6.63 140.10 6.63 140.01 6.64

C,l = C,2 = E,3. d4/4 = Z d3/4 ‘Is! ~d %/4 ‘1.4.

16 -
— WANG[l]

14 --- REDDY et aI. [6]

pRESENT METHOD

%1=%2=%3

\
dJdl = 1.1

9

4 -

2 –
.--- —-

02~
160 180

a (dqpes)

Fig. 3. Normalized characteristic impedance of a homogeneous cylin-

drical stnpline as a function of strip half-angle.

60 r dJd, = 2 d3/dl = 1.8 dJdl = 1.4

50 L— WANG ( ql = %2= q,) [11

-‘- REDDY et al. [6]

PRESENT METHOD

j
~. 3

10 -
%,/ %1 = 1

. (degrees)

Fig. 4. Normalized characteristic impedance of a three-layer dielectnc-
filled stnpline as a function of strip half-angle.

results for d4 /dl = 2 are shown in Figs. 4 and 5. Table II

shows the results for a homogeneous stripline of two

different thicknesses obtained by [5], [6] and the present

method. For d~/dl = 2, good agreement is obtained. How-

ever, for da /dl = 6, while the results from [5] and the

present method agree to within 0.5 percent, the results

calculated from [6] are erroneous. Hence, the accuracy of

the results shown in [6, figs. 11–16] is questionable.
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140-

REDDY et al. [6]

--- JOSHI et al. [3]

PRESENT METHOD

j 100 -
d4/dl = 2 dJdl = 1.4

~
~1 =%2=%3

60 -

40 -

200 ,~ I I I I I
20 30 40 50 60 70

a (degrees)

Fig. 5. -Normalized characteristic impedance of a homogeneous stripline
as a function of strip half-angle.

TABLE II

NORMALIZED CHARACTEFUSTIC IMPEDANCE OF A HOMOGENEOUS

STRIPLINE AS A FUNCTION OF STRIP HALF-ANGLE CALCULATED

FROM THREE DIFFERENT METHODS

~zo (ohm) dJd ,=2. d,fd ,= 2J- &Z,, (ohms ) dJd,=6, d3/dl=.&

PmsmtCm [5] [6] w,th [5] Print
Method

[6] wtth
% Method %

I2988 I 48.39 I 4S 56 I 48.90 I 92.2o I 9239

I

to3 30
3973 3849 38.68 3890 77,53 7772 8536 I

3s0

~

MICROSTRIPLINE %,=1 d31d, =2d4 +-a

MICROSTRIPLINE — +,. <2.2

‘[
$

.------- %=%=4

/

-.-. —

5
%=%=6

\
STRIPLINE — d,/d,=2 d3/d, = 1.4

‘$
- 1s0
2

“>.
--------- d,/d,=2 d,/d, = 1.6

~

L \

‘. w%

\

“%. -—---- d,/d,=2 d,ld, = 1.S

“’”%* .

-1 X ikngk resulrs [S1

0 20 40 m w Sal 130

. (degree)

Fig. 6. Normalized characteristic impedances of cylindrical stripline
and microstrip line as a function of strip half-angle.

Figs. 6 and 7 show the normalized characteristic imped-

ances of striplines, microstrip lines, and buried microstrip

lines. The characteristic impedance is given- by ZO

=~~. The conducting strip is located at p= d,,

p = d3, and p = d~ for the stripline, microstrip line, and

buried microstrip line, respectively. In Fig. 6, the micro-

strip line case is compared with the results obtained from

the approximate solution given in [5] and good agreement

is obtained. In Fig. 7, we varied the distance between the

conducting strip and the ground plate at p = dl of the
buried microstrip line. As the strip gets closer to the

Sa

daid, + co d,/dl = 2 d2/dl = 1.4, 1.6, 1.8,2

d2/dl = 2

300- — h
%=1 %=%1

3

- -k$iii+

%,=6

LS
$

“~
. . . . . . . . . 5,=4

%.
~ IQ 1.6

%+
------- +,=2

~ %+

I 1- ~ :“4 ‘-’%%

&
*— -

0
I I I I 1

I 1 1 1 1 1

0 30 40 m WJ Im M

. (degrees)

Fig. 7. Normalized characteristic im~etkmce of a buried microstrip line

lb

lm

as

as a function of s;rip half-angle.

‘----- d4/d,= 3 dJd, = 1.7 (d$+N/d, = 3/1.7

\
------ d4/dl= 3 d3/d, =3/1.8 (d,+8)/d, = 1.S

+,

y,
--------- d4/d,= 2 d,/d, = 1.4 (d,+8)/d, = 2/ 1A

* ,:,
— dJd,= 2 d,ld, = 1.3 (d,+8)/dj = 2113

-.;,\;\
*, \;\ ~,=~2=m3=2

‘.; \\\

\

?,, “+:<

‘,,, <:,,
.

.
.\\\ 7A”@ results [51

●.
. . . k.,

* .

““+:

4-——l——i+—t—+—
0 m 40 m 90 Im 1:

. (dwee.s)

B

I

Fig. 8. Normalized characteristic impedance of a homogeneous stripline
with finite thickness 13as a function of strip half-angle.

ground plate, the normalized characteristic impedance is

affected little by the air region above p = d3. As p in-

creases, the ef feet due to different dielectrics becomes

stronger. Finally, when p -+ d3, the buried microstrip line

resembles the microstrip line.

The finite-thickness case for the stripline is compared

with the results calculated from the equations given in [5].

The parameters are chosen such that (29)-(32) and (27)

and (28) in [5] can be used. Equation (27) seems to have a

parenthesis missing; the denominator should read

&(x(W/W+(l/n)P(xD. The results are shown in Fig.
8 and very good agreement between the present method

and [5] is obtained.

The iterative method is next extended to treat two

coupled transmission lines. The conducting strips have the

same strip half-angle of a =10.1950. The separation angle

y between the strips is defined as in Fig. 9. For two

conducting strips of equal strip half-angle a on the same p

plane, we can define the even- and odd-mode characteris-

tic impedances denoted by 2.. and ZOO, respectively, as in
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Fig. 9. Definition of angle of separation y for coupled transmission
lines.
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Fig. 10, Even- and odd-mode characteristic impedances of two coupled
cylindrical buried microstrip lines as a function of separation angle;
8/dl = O, 0.5 and a =10.195°.

[12]. Fig. 10 shows the ZO, and ZOOof two coupled buried

microstrip lines of two different thickness, 8/all = O and

0.5, located at p/all= 1.4, 1.6, and 1.8 with C,l = C,z = 2.

The finite thickness does not have much effect on ZOO

when the separation angle is small. For smaller dz /dl, 20=
and ZOO approach each other as the separation angle

between the strips increases; this means that when the

strips are closer to dl, the coupling between the strips is

less for larger y, because the fields are confined to the

strips. Increases in dz /dl result in an increase in Zoe but

a decrease in ZOO. Fig. 11 shows Zoe and Zoo of two

coupled microstrip lines of two dielectric layers. Increases

in d3/dl will increase both ZOe and ZOO. Increases in the
dielectric constant in region II will decrease both ZO, with

ZOO. The coupling between the rnicrostrip lines is stronger

-—
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Fig. 11. Even- and odd-mode characteristic impedances of two coupled

cylindrical microstrip lines as a function of separation angle; a =
10.195°.

4.0 r

&s
i

------ -- ------ --------------------- -,----- ---

/

---------- ______------ ------ .-. -. —.------- .-...
-“%. . . .

.. .
------.-- a%r,--------------------------------

. . .
%...

“-----
-------

---------
. . . . . . . . . . . -------

1 ..........-..............................--------------------------
ado

._-_. _-—. —----
_._-- .- — -------------

1.8
4 I 1 I I I

I 1 1 1 1 t

0 aa 4a m m ma 1:

Y (degrees)

I

Fig. 12. Variation of propagation constants of a cylindrical microstrip

line at p = d3 coupled with a buried microstrip line at p = d2 as a

function of separation angle. — <,1 = 6,2 = 2., -----C,, = 2, 6,2 = 4;

‘-–-CA = 4, 6,2 = 2; ‘––––c,l = cr2 = 4. d4/dl + ~, d3/dl = 3,
d2/dl =2, .,3 =1,and a=10.195°.

than that for the buried rnicrostrip case as the differences

between 20= and ZOO are larger for large y. Although not

shown here, ZO. and ZOO for a coupled stripline with a

three-layer dielectric decrease when the dielectric constants

increase [15]. Unlike the buried microstrip or the rnicro-

strip case, 2., and ZOOof the coupled striplines are equal

at large y, which implies that the coupling between two

strips diminishes as y increases.

When the two coupled transmission lines lie on two

different p planes, we cannot define the even- and odd-
mode characteristic impedances for the coupled system.

instead, we calculated the propagation constant /3 of each

of the two propagating modes. These propagation con-

stants can be converted into effective dielectric constants

for the propagating modes. Fig. 12 shows the variation of

the effective dielectric constant (/3/k. )2 with y for two
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TABLE III

EFFECTIVE DIELECTRIC CONSTANTS OF SIX COUPLED STRIPLINES

AS A FUNCTION OF SEPARATION ANGLE

separation I effective dlelertric constant I

3 rd I 4 th I 5th I 6 th I
mode I mode I mode I mode

3.1405 [ 5.0790 I 5.1479 I 5.2594w
dJdl = 4, d3/dl = 3, d2/dl = 2, a =10.195°, c,t = 2, C,z = 4,

<,3 = 6.

TABLE IV

EFFECTIVE DIELECTRIC CONSTANTS OF THREE MICROSTRIP LINES

COUPLED WITH THREE BURIED MICROSTRIP LINES AS A

FUNCTION OF SEPARATION ANGLE

.separatlon effectwe dlelectnc constant
angle y

(degrees)
1 St 2 nd 3 rd 4 th 5 th 6 th

mode mode mode mode mode mode
0.00 2.0722 2.1945 2.3896 3.0725 3.1504 3.4138
6.33 2.0723 2.1987 2.3982 3.0551 3.1382 3.4092

18.98 2.0749 2.2251 2.4461 2.9133 3.0722 3.3689
35.86 2.0768 22354 2.4215 2.6929 3.lCS)l 3.3641
63.98 2.0833 2.2860 2.4021 2.5362 2.9412 3.2611

106.17 2.1075 2.2978 2.3393 2.4311 2.7887 3.0065

d4/dl-+rn, d3/dl=3, dJd1=2, e,1=2, C,2=4, cr3=l,and a=
10.195”.

coupled strips located at p = dz and d3, respectively, for

~73= 1 and dq + ee. The variation in /3 as a function of y

is considerably more pronounced for this configuration

than for homogeneously filled coupled striplines [15]. For

the coupled stripline, the two propagation constants

coalesce and (/3/k. )2 is simply equal to the dielectric

constant.

For the cylindrical multiconductor transmission line, we

first treat a stripline structure with two layers of strips

located at p = d3 and p = dz, respectively. Each layer of

strip consists of three strips. Each strip has a strip half-

angle of 10.1950 and the strips on the same p plane are

20.39° apart. As a second example, we treat a combined

microstrip and buried microstrip structure by setting c,3 = 1

and d4 + m. To calculate the propagation constants of the

propagating modes, we need [L] and [C] matrices. To

obtain [L] or [C] matrices, we need to solve (1) for six

independent excitations. In general, it took about seven to

ten iterations for each excitation. The CPU time on a VAX

11/780 for computing six excitations is about 4–5 seconds.

Table III shows how the six propagating modes of the

coupled stripline system vary with the separation angle y.

The propagation constants of the six propagating modes

do not vary too much as y increases, and they cluster into

two groups due to the fact that the two sets of strips lie on

two different planes. Table IV shows the six propagating
modes of the combined microstrip and buried microstrip

structure. The propagation constants have a larger varia-

tion as y increases. It is found that the larger the discon-

tinuities in the dielectric-to-dielectric and dielectric-to-air

interfaces, the larger the variation of D with y.
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VI. CONCLUSIONS

A class of cylindrical multiconductor transmission lines

has been analyzed by a numerically rigorous iterative

procedure. Because of the periodicity of the cylindrical

structure, numerical efficiency can be obtained via the use

of FFT. The numerical results are compared with available

data. Results from the present method compare well with

those obtained by conforrnal mapping; however, we also

find that results generated using the series expansion

method [1], [5] can be in error if a sufficient number of

terms are not includecl. Extensive data on different cylin-

drical structures have been presented to illustrate the

versatility of the present method. Finally, the method is

suitable for treating multiple lines by simply increasing the

sampling rate.
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