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Analysis of a Class of Cylindrical
Multiconductor Transmission Lines Using
an Iterative Approach

CHI HOU CHAN, MEMBER, IEEE, AND RAJ MITTRA, FELLOW, IEEE

Abstract — A class of cylindrical multiconductor transmission lines is
theoretically analyzed, and useful parameters, e.g., characteristic imped-
ance and effective dielectric constant, are derived. Discretization of the
continuous functions and exploitation of the periodicity of the cylindrical
structure lead to a discrete convolution which can be carried out numeri-
cally rigorously and efficiently using the FFT algorithm. An iterative
technique is employed in the spectral domain to derive the solution of
integral equations for the charge distribution. Numerical results are pre-
sented and compared with available data.

I. INTRODUCTION

YLINDRICAL STRIPLINES and microstrip lines

operating in the quasi-TEM mode have recently re-
ceived much attention in the microwave literature [1]-[6].
Using flexible dielectrics, it is possible to construct non-
planar transmission lines that can be wrapped around a
cylindrical surface and used to excite conformal arrays
mounted on a cylindrical object. A cylindrical transmission
line is also useful for modeling a warped, planar transmis-
sion line that has been subjected to severe environmental
changes.

Two basic approaches have been employed to analyze
cylindrical striplines and microstrip lines. The first of these
entails the solution of the Laplace equation in cylindrical
coordinates and yields a dual series representation for the
potential function. The constants appearing in the series
are obtained either by using the least-square or simple
integration methods [1] or by solving two simple equations
that take the fringing field into account [6]. In this method,
the analysis is not rigorous because the infinite series is
truncated. The second approach transforms the cylindrical
structure into a planar one by conformal mapping [3]-[5].
Although this method is rigorous, the solution requires the
numerical evaluation of elliptical integrals. In any event,
neither of these two approaches is suitable for the analysis
of cylindrical multiconductor transmission lines.

In this paper, a class of cylindrical multiconductor
transmission lines is analyzed using a spectral-domain
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' formulation. The continuous functions representing the

charge distribution are discretized into a series of cylin-
drical pulses with unknown weighting coeffients. Next,
these coefficients are solved for using an iterative proce-
dure [7]-[9] appropriate for the spectral-domain formula-
tion. Unlike the planar structures [8] that are aperiodic in
the transverse direction, the cylindrical transmission lines
are strictly periodic in the ¢ direction; hence, the fast
Fourier transform algorithm can be rigorously applied to
compute the convolution integral [10]. For the single-con-
ductor case, the characteristic impedances of a cylindrical
stripline and microstrip line are compared with the results
presented in [1], [2], [5], and [6]. Next, the finite-thickness
strip is treated using a modified spectral Green’s function
[11], and the results for this geometry are compared with
the data calculated from the equations provided in [5]. The

-iterative method is then extended to the two-conductor

case, for which the even- and odd-mode characteristic
impedances [12] are calculated. The propagation constants
for different propagating modes of the cylindrical multi-
conductor transmission lines are also computed and dis-
played as a function of certain geometrical parameters.

II. OUTLINE OF THEORETICAL PROCEDURE

The cross section of a generic cylindrical multiconductor
transmission to be analyzed is shown in Fig. 1. With
appropriate choices of parameters and boundary condi-
tions, this structure can be reduced to a single-layer or
multilayer stripline; a microstrip line; or a buried micro-
strip line. The Maxwell’s coefficients of capacitance for the
line can be readily obtained if the charge distribution on
the conducting lines is known for different excitations. The
line coefficients of inductance can be obtained from the
coefficients of capacitance with the dielectric replaced by
air [13). The integral equation describing the problem can
be written as

V(é,p) =Y fDG,,(qb,(b', 0i,0;)0,(¢,p,)d¢/, €D,
J 7
(1)

and
o(9,0)=0, ¢&D, (2

where D, corresponds to the intervals in the ¢ direction
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Fig. 1. Multiconductor cylindrical transmission line.

which coincide with the conducting strips on the jth
interface occupied by the strips. ¥(¢, p,) represents the
specified voltages on the conducting strips and G,, are the
Green’s functions to be determined in the next section.
Then the only unknowns are the charge distributions
o(¢, p,) on each of the conducting strips. For an N-con-
ductor system, this integral equation is solved N times,
corresponding to N independent excitations. The total
charge on each of the strips is obtained by integrating the
charge distribution along the arc length of the strip. The
coefficients of capacitance [C] and inductance [L] are
obtained through the following matrix equations:

0= [o(¢)ods

[c]=[ellv]™ (4)

[L]zlu‘ofo[co]_1 (5)
where [V] is the voltage excitation matrix, [Q] is the
corresponding charge matrix, and [C;] is the capacitance
matrix calculated with the dielectric layers replaced by air.
The eigenvalues of the product of the [ L] and [C] matrices
will give the propagation velocities of the dominant propa-
gating modes. These propagation velocities can then be
converted to propagation constants for the cross-talk anal-
ysis of the transmission line.

3

III. DERIVATION OF THE GREEN’S FUNCTION IN

THE SPECTRAL DOMAIN

As a preamble to formulating the integral equation
using the spectral-domain approach, we need to derive the
spectral Green’s function for the geometry under consider-
ation. Initially, we assume that the strips are infinitely
thin; the modification necessary to handle the small but
finite thickness [11] case is discussed later. To illustrate,
the derivation of the spectral Green’s function for a strip-
line filled with a three-layer dielectric [6] is detailed below
and only a tabulation of the other spectral Green’s func-
tions for the structures considered in this paper is provided
later.

Consider the cylindrical stripline shown in Fig. 2 with a
three-layer dielectric filling. The potential ¥ in various
regions satisfies the Laplace equation [6] in the cylindrical
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Fig. 2. Cylindrical stripline with a three-layer dielectric filling.

coordinates
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For the case of an infinitely thin strip, the charge distribu-
tion assumes the form

o(¢,0)=0(9)8(p—d;)

where 8(p — d;) is the Dirac delta function.
Now define the Fourier transform pair of ¥ via the
following integral and summation:

(M

_ 1 o
\I’(p,n)=5;r—/: ¥(p,0)eds, 0<d<2m (8)

and
¥(p,9)= 2 ¥(p,n)e . (9)

Next, transforming (6) according to (8) gives
24 (2 Y(p,n)=0
RN Lrn p,n)=

L o)~ ", m) =0
——p—¥(p,n)~—¥(p,n)=0.
p do dp 0

(10)

The boundary and continuity conditions in the Fourier
transform domain read

\i’m(dm”) =0 (11)
\Tfn(d3,n) =‘i'm(d37”) (12)
J . J . 1
€r3—‘1'1n(d3’”) =fr2“‘I'n(d3’n)_ —&(n) (13)
ap ap €
\TIII(dz’n) =\i1(d2’") (14)

a . J .
erza-p‘l'u(dzyn)=€rla_pq'1(z,n) (15)

and

V. (d,,n)=0 (16)

where €4, €,,, and ¢,, are the relative dielectric constants
for regions I, 11, and III, respectively.
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In all three regions, the general solution of (10) is
Alnp+ B for n=0 and Ap~"+ Bp" for n+ 0, respec-
tively. Upon writing these solutions for different regions
and enforcing the boundary and continuity conditions
(11)—(16), a set of inhomogeneous simultaneous equations
for the coefficients of the potential function in the differ-
ent regions is obtained. These equations are readily solved
to yield ¥, the Fourier transform of the potential distribu-
tion at p =d,. It is given by

®(ds,n) =G(ds,n)6(n) (17)
with
d. N,
G(dy,0)=—22 (18a)
€y D,
—d; N,
G(dy,n) = forn+0 (18b)
0 Dn
where
d 4 d,
Ny=In 4 €,1n Z +¢€,,ln A (19a)
D, = 1 9, + 1 4 + i 4
0= €€, 1IN d4 €,3€,, 10 d3 €,0€,3 10 d2
(19b)

d,
N,= e,2coth(|n|ln( 7

d,
+ €, coth (|n|1n( Z, )) (19¢)

2o )
o]
ol

(194d)
It is important to point out that due to the ¢ periodicity of
the cylindrical structure, the spectral Green’s function is
discrete. Furthermore, the spectral Green’s function is
symmetric in n. Putting €,, =¢,, = €,;, we have the spec-
tral Green’s function for the single dielectric stripline
described in [1]-[6].
The spectral Green’s function for the microstrip line
discussed in [1] and [5] can be obtained easily by setting
€,, = €,, =€,; and d, — oo. The resulting equation is given

as
( )
.60(,] d]

3

and

D, = |n|( €,4€,, coth ( [njln

I
P

+€,5€,4 coth ( |n|Iln (

&.'&. &l&.
&'iw& Q..'Q.

+ €,4€,, coth ( [n]ln (

G~(d370) =

(20a)
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and

enfef4)
el

forn#0. (20b)

If the conducting strips are placed at p=d,, ¢,; =1, and
d, —> oo, the buried microstrip configuration is obtained.

é(d3, n)=

Again, for €,, =¢,,, we have
d
d, ln( a’2 )
G(d,,0) = ——+ (21a)
€4€o
and
[ d,
—d,cosh| |n]ln [\E—
-~ 2
G =

2|nle €0
!

—cosh ‘111
COS. n
\l | l3

d,
+e€, s1nh(|n|ln( . ))
d, d,
—cosh([n[ln(z)) + e,lsmh(lnlln(d—B))

forn+0. (21b)

If we place another set of conducting strips at p=4d,
(see Fig. 1), we obtain a different coupled stripline system.
To derive the spectral Green’s function of this new struc-
ture, we simply replace & in (13) by 6;. At the interface
between regions I and II, (15) is replaced by the new
boundary condition, which reads

ad
rZa

d
rla \I'I(dp”) '6_52(")- (22)

Here, 6, and 6, are the Fourier transforms of the charge
distributions at p=d; and d,, respectively. Solving the
algebraic equations, we obtain

Yin(ds, n) _ G~11(") él-z(n) ,(n) .
[‘I'n(dz‘a”)}- [621(’1) Gzz(”)][@(n)} (23)

Z;)+e,21n(;ll ”/D(o)
(24a2)

N dy\ [ d,

600 -t 2] 00

. dr\ [ d,
G, (0) =¢,,dyIn (Z)ln(;,—;)/D(O)
51

(?22(0)=d21n(g-g-){, n(j )+er31n(;i ”/D(o)

(24d)

‘I’n(dz’")

where

- d
d4

(24b)

(24c)
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G~11(n) =—4 Sinh(’n’ln(j_:))[erzCOSh(lnlln( 32)) sinh(|n|ln(j—f))

~€, cosh(|n|1n( )) sinh |n|1n

. d,
Go(n) = —2¢,,d, sinh(]nlln —-))sinh (ln[l (

¥
~ d,
Gy (n) = —2¢,,d, smh(|n|ln(d

Gy(n)=—d, sinh(|n|1n(

4
- h In|—
€, COS (|n| (d

where

d,
D(0) =¢,| €,4€,51n 7

+ €,4€,2 ln(

/ D(n) (250)

;i—)) / D(n) 2sb)

B
e

))smh |n|1n )) /D(n (250)

e

- ,n,eo(e,zsmh(,n,m( o o 2] 2

cosh(,n,m( ))cosh(m,m( smh(,n,m( |
o o]
i

+ €,4€,; sinh ( |n]ln ( )) cosh | [n]ln

If we let d,— o0, we can obtain the spectral Green’s
function for the case where we have a layer of microstrip
lines and a layer of buried microstrip lines.

The deviations of the above spectral Green’s functions
were based on the assumption that the thickness of the
strip is negligible compared to the arc length of the strip.
When the strip has a finite thickness, we need to modify
the spectral Green’s function. As an example, the case of a
single-dielectric-layer stripline of finite thickness [5] is
discussed here.

In the derivation of the spectral Green’s function for the
case of an infinitely thin strip, the constants for the general
solutions of (6) are evaluated. Substituting these constants
into the representation of the potential function in region
ITI, the potential at a small distance § above the strip at
p =d; is related to the potential at p =d,; by

dy+6

In
¥(d,+8,0)=

¥(dy,0)  (27a)

dl . d4

Z))Slnh(ln’l (Z))

d, d,

—d—S))cosh(Ml (d—l))) (26b)
and

d,+38
sinh(ln[ln( 7 ))

V(d,+8,n)= u for n#0.

. d3
sinh | |a}{ln ( d—4))

Considering the two layers of charge at d,+ 8 and d,,
with each having the same amount of total charge, the
spectral Green’s function can be modified by multiplying
by the correcting function

(27b)

dy+ 8

T(0) = 2 (28a)
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and
) dy+38
sinh | |n]ln 7
T'(n)=|1+ 2 2 for n#0.
inh | |n|ln iii
sinh | |n| d,
(28b)

Since the charges at the two edges are neglected, this |

approximation is valid only for a small ratio of finite
thickness to the arc length of the conducting strips. For the
cylindrical stripline, the results are compared with the
thick-strip results calculated from the equations given in
(51
IV. THE ITERATIVE PROCEDURE

An iterative algorithm based on that in [7] and [9] for
solving (1) is constructed by defining an error criterion as
follows:

F(¢)=V($)- /D G(,¢)o'(¢')de’  (29)

12
J1F(9)1pds
BCE= {2 —— — (30)

fD V() Ppde

where ¢’ represents an initial guess, and BCE denotes the
boundary condition error. The updated ¢ is generated and
is used as the initial guess for the subsequent iteration.
This procedure systematically and monotonically improves
the accuracy of the solution and is repeated until the error
is sufficiently small [7]-[9}.

The convolution operation in (1) with the p dependence
suppressed is carried out in the following manner:

[6(6. )0 () de =FHG Flo'])  (31)

where F and F~! represent forward and inverse Fourier
transforms, respectively.

The present method is slightly different from those in

[71-19] in that the & sampling is not used in discretizing the
continuous function o. Instead, we expand the unknown
function o by cylindrical pulses as follows:

N/2—1
o(¢)= X o,P, (32)
~N/2
where
) 1 1
P, = 1 1f(n—§)A¢<¢<(n+5)A¢ (33)
0 otherwise
27
Ap = N (34)
0,=0 when ¢€&D (35)

419

The reason for using the cylindrical pulse function, as
opposed to 8 sampling, is that the convergence of the
iterative procedure is usually superior for the pulse expan-
sion relative to the §-sampling case. Upon Fourier-trans-
forming (32), we obtain

5=sinc(f—§ji)FFT(on) (36a)

or
§=SFFT(o,). (36b)

Hence, the continuous convolution in (1) can be written as
a discrete convolution;

- A
f G(¢,¢)o"(¢')d¢' = F_FT‘l{G'sincﬁE? FFT(o’)}.
D
(37)

The modified algorithm is given as

ste s sfe sk sk s sk sk sfe ske sk e ok sk sk sk sk skok sk R sk sk sk ok ok

k=0 ¢°=0 (38)

E’=V, (39)
N/2—1

BCEN= Y [V,loA¢ (40)
-N/2

BCE® =1 (41)

sk sfe sfe she 3k s 3k o ok ok 3K 3k ok sk ok ok ok Kok ok ok ok sk sk ok ok

k=k+1 gi=FFT Y (FFT(FF1)SG 1) (42)
[k =FFT-YFFT(g})S,G,) (43)
N/2—1
A=Y E¥VfkAé (44)
—N/2
N/2—1
Bk= 3 |ffleAe (45)
~N/2
ok ok ok sheoskook skosle sk e sk sk skl s ok ks sk sk sk Kk k ok
N/2-1
if n>1 Ck= ) fFfFAe (46)
~N/2
g‘k . Ck*/Bk~1 (47)
Bk — Bk _ gkck (48)
gr=gr—{fg ! (49)
fE= =gt (50)
,nk - ak*/Bk (51)
of =01 +nfgy (52)
FF=FF -k (53)
N/2-1 12
Y |EfpAd
ko | N2 54
BCE BCEN (54)

The asterisk represents the complex conjugate operation.

ok 3k 3k sk ok sk o ok sk ok ok ok ok ook the ook sk sk sk sk sk e ke sk



420 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-35, NO. 4, APRIL 1987

There are several important features of the iterative
approach, as enumerated below. First, this iterative pro-
cess generates a numerically rigorous solution to the dis-
cretized problem and does not involve the truncation of
the infinite series as in [1] and [6]. Second, it can have a
large number of unknowns without suffering from the
computer storage problem, as in the matrix methods, be-
cause the iterative algorithm only requires the storage of
column vectors. Third, the iteration process typically con-
verges very quickly! and can be terminated once the
desired accuracy is reached. Fourth, the choice of the
initial guess o’ is not critical; in fact, it can even be zero.
Fifth, in contrast to the matrix or dual series approach, the
accuracy of the results can be readily improved in the
iterative procedure by simply increasing the number of
expansion pulses without increasing the complexity of the
computational steps. Finally, the algorithm is easy to pro-
gram and different structures can be analyzed by simply
changing the spectral Green’s function subroutine.

V. NUMERICAL RESULTS

A number of cylindrical multiconductor transmission
lines have been investigated using this iterative method
and some representative results are presented in this paper.
For further details, the reader is referred to Chan and
Mittra [15]. Since the iterative method is solving an ap-
proximate problem in which continuous functions are being
approximated by series of cylindrical pulses, it is necessary
to verify the numerical convergence by increasing the
number of these pulse functions and studying the behavior
of the solution. Table I shows the normalized characteristic
impedance of a homogeneous stripline with €,, =¢,, =¢,,,
d,/d,=2, d,/d, =18, and d,/d,;=1.4. Three different
sampling rates Ad =27/N with N =512, 1024, and 2048
are used. The stopping criterion of the iteration process is
set at BCE < 5X 1074 It took seven iterations at most and
about 4 s on a VAX 11 /780 for N =2048. For N =512, it
usually took only three to five iterations and fractions of a
second to stop the iteration process. Because of numerical
discretization, the width of the strip must be a multiple of
27/2™ for applying the radix 2 FFT. Hence, the strip
half-angle is slightly different for the three different sam-
pling rates. Keeping this in mind, we note that, in general,
the solutions agree very well with each other, and we
conclude that N = 512 is adequate for achieving numerical
convergence. Consequently, for the rest of the calculations,
N =512 is assumed.

For the thin dielectric case, i.e., when d,/d, =1.1, the
approximation used in [1] and [6] is valid and the results
compare well with the iterative method shown in Fig. 3.
For a thicker dielectric, i.e., for d, /d, =2 and d, /d;=1.8,
the results from [1] and [6] seem to be somewhat inaccu-
rate when the strip half-angle is less than 80°. However,
for d, /d, =1.4, a reasonably good approximate solution is
obtained if the effective strip half-angle [6] is used. The

1 The nondivergence of the 1terations scheme has been proved in [7] and
[14].

TABLE1
NORMALIZED CHARACTERISTIC IMPEDANCE OF A HOMOGENEOUS
STRIPLINE AS A FUNCTION OF STRIP HALF-ANGLE WITH
DIFFERENT SAMPLING RATES

N =512 N = 1024 N =2048
o Je12, (ohms) a & 1Z, (ohms) « Ve 1z, (ohms )
2004 38.23 19 86 3832 1995 38.14
3973 2143 3990 2133 39.99 21.27
60.12 14.75 5994 1478 6003 1475
79.82 11.34 79.98 11.31 8007 1129
100.20 914 100.02 9.16 99.93 916
119.88 N 12006 7.69 119.97 7.70
140.27 6.63 140.10 6.63 140.01 6.64

€1=¢€, =€, dy/dy=2,dy/d =18, and d, /d; =1.4.

WANG [1]
—-=— REDDY et al [6]
x PRESENT METHOD

&1 = 627 63

d,/d; =11
dyld; = 1.04

vV .,Z, (ohms)

dyld; = 1.08

R Syru—

fo) | i |
20 40 60 80 100 120 140 160 180
o (degrees)
Fig. 3. Normalized characteristic impedance of a homogeneous cylin-
drical stripline as a function of strip half-angle.
60 dufd; =2 dyfd; = 1.8 dyfdy = 1.4
50 WANG (g1 = 6= 631
—~—=— REDDY et al.[6]
7 40 X PRESENT METHOD
=
is 3 G2l g1 =1
!%T' &2l gy =6
20
[y =1
10 &3l &1
[0}
20 40 60 80 100 120 140 160 180
« (degrees)
Fig. 4. Normalized characteristic impedance of a three-layer dielectric-

filled stripline as a function of strip half-angle.

results for d, /d, =2 are shown in Figs. 4 and 5. Table 1I
shows the results for a homogeneous stripline of two
different thicknesses obtained by [5], [6] and the present
method. For d, /d, = 2, good agreement is obtained, How-
ever, for d,/d, =6, while the results from [5] and the
present method agree to within 0.5 percent, the results
calculated from [6] are erroneous. Hence, the accuracy of
the results shown in [6, figs. 11-16] is questionable.
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140
REDDY et al. [6]
120} W\ == = = JOSHI et al. [3]
\ x PRESENT METHOD

’?_. 100 dyd; =2 dyfd; = 1.4
g \
E.i a0k €17 & 63
5

GOF

40

20o

« (degrees)

Fig. 5. -Normalized characteristic impedance of a homogeneous stripline
as a function of strip half-angle.

TABLE I
NORMALIZED CHARACTERISTIC IMPEDANCE OF A HOMOGENEOUS
STRIPLINE AS A FUNCTION OF STRIP HALF-ANGLE CALCULATED
FROM THREE DIFFERENT METHODS

Ve Z, (ohms) do/d\=2.d /d =2} Ve 12, (ohms) d d =6, d Jd ;=G
« 5] Present [6] with (s} Present [6] with
Method Aoy Method Qg
10.20 98 97 99.53 100.70 153 42 154 06 178.20
20.04 64.93 65.21 65.83 114.21 114.57 130.78
29 88 48.39 48 56 48.90 92.20 92 39 103 30
3973 38 49 38.68 38 90 77.53 7772 8536
230
N MICROSTRIPLINE ;=1 d;ld; =2 d; - 00
] MICROSTRIPLINE 1= €3 =2
200 3 A €1= 63=4
R ‘.‘ ————— €1= €=6
- ' STRIPLINE dyfd,=2 d,id, =14
'-g 190 —T— O daldy=2 dyld, = 16
£ 2 [ N X — dd,=2 dyid, = 1.8
N J
g - -
wo —— % Zeng's results [5]
i .
-1 N\
w0 —f—
] strRipLINE e
5] { | l N I 1
T | T I T 1 T I T I T
1] 20 40 80 0 100 120

o (degrees)

Fig. 6. Normalized characteristic impedances of cylindrical stripline
and microstrip line as a function of strip half-angle.

Figs. 6 and 7 show the normalized characteristic imped-
ances of striplines, microstrip lines, and buried microstrip
lines. The characteristic impedance is given- by Z,
=y(L/C). The conducting strip is located at p=d;,
p=d,, and p=d, for the stripline, microstrip line, and
buried microstrip line, respectively. In Fig. 6, the micro-
strip line case is compared with the results obtained from
the approximate solution given in [5] and good agreement
is obtained. In Fig. 7, we varied the distance between the
conducting strip and the ground plate at p=d, of the
buried microstrip line. As the strip gets closer to the

421
230
: daldy — 00 dyfdy =2 dyfdy =1.4,1.6,1.8,2
1 dyd; =2
-4 =1 =
200 — &3 &2 7 €1
T & =6
4R\ smesmeene &1=4
1 =
’E‘ 1% el NN €=
% ]
t\f -
¥ - N
(LR =
_{ N
.
-+ \\\
0 ! ! ] 1 ]
LY I T I L l T I T ‘r L
a 20 [ ] .0 100 120
o (degrees)

Fig. 7. Normalized characteristic impedance of a buried microstrip line
as a function of strip half-angle.

123

dyldy=3 dyld, = 1.7 (d3+8))d, = 3/1.7
i dyld,=3 d,id; = 3/1.8 (d,+8)/d, = 1.8

T
_f;—

--------- dytd;=2 d,/d, = 1.4 (dy+8)/d, = 2/1.4

dyfd;=2 dyid, = 1.3 (dy+8)/d, =2/1.3
&= = @3=2

d

Zeng's results [5]

V.17, (ohms)
8

T

» %X »

IllllllllllLlll]IlLllllj

120

@ (ciegrees)

Fig. 8. Normalized characteristic impedance of a homogeneous stripline
with finite thickness 8 as a function of strip half-angle.

ground plate, the normalized characteristic impedance is
affected little by the air region above p=d;. As p in-
creases, the effect due to different dielectrics becomes
stronger. Finally, when p — d;, the buried microstrip line
resembles the microstrip line.

The finite-thickness case for the stripline is compared
with the results calculated from the equations given in [5].
The parameters are chosen such that (29)—(32) and (27)
and (28) in [5] can be used. Equation (27) seems to have a
parenthesis missing; the denominator should read
\/Z(x(W/H)+(1/w)P(x)). The results are shown in Fig.
8 and very good agreement between the present method
and [5] is obtained. :

The iterative method is next extended to treat two
coupled transmission lines. The conducting strips have the
same strip half-angle of a=10.195°. The separation angle
v between the strips is defined as in Fig. 9. For two
conducting strips of equal strip half-angle & on the same p
plane, we can define the even- and odd-mode characteris-
tic impedances denoted by Z,, and Z,,, respectively, as in
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Fig. 9. Definition of angle of separation y for coupled transmission
lines.

180
&3=1 =6, =2

dyld, = 1.8 dgld; o o0 dyld; =2
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w0 | ] | ] [
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Fig. 10. Even- and odd-mode characteristic impedances of two coupled
cylindrical buried microstrip lines as a function of separation angle;
8/d,=0,0.5 and a=10.195°.

[12]. Fig. 10 shows the Z,, and Z;, of two coupled buried
microstrip lines of two different thickness, §/d, =0 and
0.5, located at p/d;=1.4, 1.6, and 1.8 with ¢,,=¢,, = 2.
The finite thickness does not have much effect on z,,
when the separation angle is small. For smaller d, /d;, Z,,
and Z,, approach each other as the separation angle
between the strips increases; this means that when the
strips are closer to d;, the coupling between the strips is
less for larger vy, because the fields are confined to the
strips. Increases in d, /d; result in an increase in Z,, but
a decrease in Z;,. Fig. 11 shows Z,, and Z;, of two
coupled microstrip lines of two dielectric layers. Increases
in d;/d, will increase both Z,, and Z,,. Increases in the
dielectric constant in region II will decrease both Z;, with
Z,,- The coupling between the microstrip lines is stronger
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Fig. 11. Even- and odd-mode characteristic impedances of two coupled

cylindrical microstrip lines as a function of separation angle; a=
10.195°.
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Fig. 12. Variation of propagation constants of a cylindrical microstrip
line at p=d; coupled with a buried microstrip line at p=d, as a
function of separation angle. €1 =€, =2; - €1=2, €,=4;
€ =4, €,=2 ——— €1=¢€,=4 dy/d —o0, d3/dy=3,
d,/d =2, ¢,;=1, and a=10.195°.

than that for the buried microstrip case as the differences
between Z,, and Z,, are larger for large y. Although not
shown here, Z,, and Z,, for a coupled stripline with a
three-layer dielectric decrease when the dielectric constants
increase [15]. Unlike the buried microstrip or the micro-
strip case, Z,, and Z;, of the coupled striplines are equal
at large y, which implies that the coupling between two
strips diminishes as y increases.

When the two coupled transmission lines lie on two
different p planes, we cannot define the even- and odd-
mode characteristic impedances for the coupled system.
Instead, we calculated the propagation constant 8 of each
of the two propagating modes. These propagation con-
stants can be converted into effective dielectric constants
for the propagating modes. Fig, 12 shows the variation of
the effective dielectric constant (8/k,)* with y for two
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TABLE III
EFFECTIVE DIELECTRIC CONSTANTS OF Six COUPLED STRIPLINES
AS A FUNCTION OF SEPARATION ANGLE

separation effective dielectric constant
angle y -
(degrees) 1st 2 nd 3rd 4th 5th 6 th
mode mode mode mode mode mode
000 3.0277 | 3.0759 | 3.1405 | 5.0790 | 5.1479 | 5.2594
6.33 3.0294 | 3.0777 | 3.1413 | 5.0761 ] 5.1457 | 5.2582
18.98 3.0362 | 3.0858 | 3.1489 | 5.0619 | 5.1305 | 5.2508
35.86 3.0305 | 3.0873 | 3.1622 | 5.0663 | 5.1240 | 5.2470
6398 3.0370 | 30885 | 3.1873 | 5.0576 | 5.1133 | 52221
106.17 3.0372 | 3.1004 | 3.2147 § 5.0562 | 5.1103 | 5.1854
dy/dy =4, dy/d =3, dy/di =2, a=10195°, €, =2, ¢,, = 4,
€= 6.
TABLE IV

EFFECTIVE DIELECTRIC CONSTANTS OF THREE MICROSTRIP LINES
COUPLED WITH THREE BURIED MICROSTRIP LINES AS A
FUNCTION OF SEPARATION ANGLE

.separation effective dielectric constant
angle y
1st 2 nd 3rd 4 th 51th 6 th

(dEgrees) mode mode mode mode mode mode
0.00 2.0722 | 2.1945 | 2.3896 | 3.0725 | 3.1504 | 3.4138
6.33 2.0723 | 2.1987 | 2.3982 | 3.0551 | 2.1382 | 3.4092
18.98 2.0749 | 2.2251 | 2.4461 | 2.9133 | 3.0722 | 3.3689
35.86 2.0768 | 22354 | 2.4215 | 2.6929 | 3.1001 | 3.3641
63.98 2.0833 1 2.2860 | 2.4021 | 2.5362 | 2.9412 | 3.2611
106.17 2.1075 | 2.2978 | 2.3393 | 2.4311 | 2.7887 | 3.0065

dy/di >0, dy/d =3, d,/dy =2, ¢,=2, €,=4, €,3=1, and a=
10.195°.

coupled strips located at p=d, and d,, respectively, for
€,3=1 and d, — oo. The variation in 8 as a function of y
is considerably more pronounced for this configuration
than for homogeneously filled coupled striplines [15]. For
the coupled stripline, the two propagation constants
coalesce and (B/k,)* is simply equal to the dielectric
constant.

For the cylindrical multiconductor transmission line, we
first treat a stripline structure with two layers of strips
located at p=d; and p=d,, respectively. Each layer of
strip consists of three strips. Each strip has a strip half-
angle of 10.195° and the strips on the same p plane are
20.39° apart. As a second example, we treat a combined
microstrip and buried microstrip structure by setting €,; =1
and d, — co. To calculate the propagation constants of the
propagating modes, we need [L] and [C] matrices. To
obtain [L] or [C] matrices, we need to solve (1) for six
independent excitations. In general, it took about seven to
ten iterations for each excitation. The CPU time on a VAX
11 /780 for computing six excitations is about 45 seconds.
Table III shows how the six propagating modes of the
coupled stripline system vary with the separation angle .
The propagation constants of the six propagating modes
do not vary too much as y increases, and they cluster into
two groups due to the fact that the two sets of strips lie on
two different planes. Table IV shows the six propagating
modes of the combined microstrip and buried microstrip
structure. The propagation constants have a larger varia-
tion as y increases. It is found that the larger the discon-
tinuities in the dielectric-to-dielectric and dielectric-to-air
interfaces, the larger the variation of 8 with v.
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VI

A class of cylindrical multiconductor transmission lines
has been analyzed by a numerically rigorous iterative
procedure. Because of the periodicity of the cylindrical
structure, numerical efficiency can be obtained via the use
of FFT. The numerical results are compared with available
data. Results from the present method compare well with
those obtained by conformal mapping; however, we also
find that results generated using the series expansion
method [1], [5] can be in error if a sufficient number of
terms are not included. Extensive data on different cylin-
drical structures have been presented to illustrate the
versatility of the present method. Finally, the method is
suitable for treating multiple lines by simply increasing the
sampling rate.

CONCLUSIONS
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